Monday, 6 October 2014

Operations in Modular Arithmetic (Addition, Subtraction, Multiplication and Equations.)


Addition and Subtraction in Modular Arithmetic:
To add and subtract in modular arithmetic, only add or subtract the numbers and find the remainder when the sum is divided by the giving modulus.
For example:
(1). Simplify:
a.       57 + 28 mod6
b.      38 + 6 mod7
c.       18 – 7 mod4
(2). Simplify:
a.       -27 mod8
b.      -31 mod3
Solution:
(1).      
a.       (57 + 28) mod6 ≡ (57 + 28) mod6
 ≡ 85 mod6
 ≡ 1 mod6 [85 divided by 6 = 14 remainder 1]
Try the b). and c)., on your own.
(2).
a.       -27 mod8 ≡ -(27) mod8
     ≡ -3mod8
     ≡ -3 + 8 mod8
     ≡ 5 mod8
Try the b)., on your own.

Multiplying in Modular Arithmetic:
To multiply in modular arithmetic, find the product and then use the modulus divide the result and find the remainder.
For example, simplify the following:
a.       15 × 7 mod5
b.      13 × 9 mod6
Solution:
a.       15 × 7 ≡ (15 × 7) mod5
≡ (105) mod5
≡ 0 mod5
Try the b)., on your own.

Addition and Multiplication table in modular arithmetic:
Addition (+) and Multiplication (×) table can be constructed in any modulus. For example; construct a table for addition in mod4 and use your table to find the following:
1.      2 (+) 3 mod4
2.      2 (+) 3 (+) 3 mod4
Solution:
Giving that mod4 = {0, 1, 2, 3}
(+)
0
1
2
3
0
0
1
2
3
1
1
2
3
0
2
2
3
0
1
3
3
0
1
2
From the above table:
1.      2 (+) 3 mod4 = 1 mod4
2.      2 (+) 3 (+) 3 mod4 = 0 mod4
Example (2):
Construct addition and multiplication table for mod5. Using your tables, find the truth set of the following:
a.       4 × (n + 4) = 3
b.      (n +1) × (n + 1) = 4.
Please try the above example on your own.

Equations in Modular Arithmetic:
You can solve equations in modular arithmetic. For example:
a.       If 4 × 3 ≡ x mod6, find the value of x.
b.      If 2x + 1 ≡ 7 mod8, find the value of x.
Solution:
a.       Giving that 4 × 3 ≡ x mod6,
But 4 × 3 ≡ (4 × 3) mod6
                ≡ (12) mod6
                ≡ 0 mod6
the value of x is 0.
b.      2x + 1 ≡ 7
      2x ≡ 7 – 1
     2x  ≡ 6
        x ≡ 3
the value of x is 3.
Try the following examples on your own.
a.       Find the value(s) of 3x + 4 0 mod5
b.      Find the solution set of x2 + 1 3 mod7.  


You may also like these:

1.   Indices - New!

For any further advice on your studies or any challenge on this post, please feel free to contact me at: dzaazo@gmail.com. I will appreciate it.

Labels: ,

0 Comments:

Post a Comment

Subscribe to Post Comments [Atom]

<< Home