Saturday, 16 August 2014

Ungrouped frequency distribution

When the range of the data values is relatively small, a frequency distribution can be constructed using single data values for each class. This type of distribution is called ungrouped frequency distribution. This of data is organised in such a way that the marks are not grouped. 
Example one (1)
Marks
1
2
3
4
5
6
7
8
Frequency
2
7
5
4
9
7
6
5

Example two (2)
Age (yrs)
Frequency
17
3
18
10
19
8
20
5
21
2
Processing Ungrouped Frequency Distribution:
NB: [Processing Raw Data – case one]:
The following data represent the visitors to a museum for 50 days
41       52        46        42        46        36        44        68        58        44
49        48        48        62        52        50        45        72        45        43
63        49        57        44        48        49        45        47        48        43
45        56        61        54        51        47        42        53        41        54
58        55        43        63        38        42        43        46        49        47
Using intervals 35 – 39, 40 – 44 etc form a frequency distribution table for the data.
NB: Depending on the question asked ALL OR SOME of the entries in the table below are required.













NB: [Processing Raw Data – case two]:
Sometimes students are required to process a raw data without a GIVEN INTERVAL. Care must be taken in such cases, for most of them can easily be processed as an UNGROUPED DATA instead of a GRUOPED DATA. For certainty, check the range of the data. That is the lower figure and the highest figure. If the range is short and the figures are consecutive in nature, then the data can be processed as an ungrouped data.
 For example the following data shows marks obtained by students in a mathematics test.
6          9          5          9          5          3          6          6          7          6
7          5          5          2          7          10        5          6          4          6
2          9          8          0          6          2          9          7          1          8

Construct a frequency table for the data.


NB: [Processing Raw Data – case three]:
If the range is wide and the figures are not consecutive in nature, the data is best processed as grouped data. In such cases, intervals chosen should be such that the number of class intervals would be between 5 and 13 in order to minimize errors.
For example, the following table gives the marks of 30 students in a class.

45        68        67        61        59        59        59        60        64        65
68        71        69        67        64        63        50        62        64        64
76        57        68        55        72        53        80        74        70        57
Solution
NB: The highest figure is 80 and the lowest is 45. If we select class intervals of width 10, we have only five classes, which is not the best. However, if we go for class interval of width 5, we have about 8 classes which are between 5 and 13 classes as stated above. We therefore go for the width of 5. Now,

Marks
Class Midpoint
Tally
Frequency
45 – 49
47
/
1
50 – 54
52
///
3
55 – 59
57
////  /
6
60 – 64
62
////  //
7
65 – 69
67
////  /
6
70 – 74
72
////
4
75 – 79
77
//
2
80 - 84
82
/
1


For any further advice on your studies or any challenge on this post, please feel free to contact me at: dzaazo@gmail.com. I will appreciate it.

Labels: ,